What triggers the aerobic dive limit? Patterns of muscle oxygen depletion during dives of emperor penguins.

نویسندگان

  • Cassondra L Williams
  • Jessica U Meir
  • Paul J Ponganis
چکیده

The physiological basis of the aerobic dive limit (ADL), the dive duration associated with the onset of post-dive blood lactate elevation, is hypothesized to be depletion of the muscle oxygen (O(2)) store. A dual wavelength near-infrared spectrophotometer was developed and used to measure myoglobin (Mb) O(2) saturation levels in the locomotory muscle during dives of emperor penguins (Aptenodytes forsteri). Two distinct patterns of muscle O(2) depletion were observed. Type A dives had a monotonic decline, and, in dives near the ADL, the muscle O(2) store was almost completely depleted. This pattern of Mb desaturation was consistent with lack of muscle blood flow and supports the hypothesis that the onset of post-dive blood lactate accumulation is secondary to muscle O(2) depletion during dives. The mean type A Mb desaturation rate allowed for calculation of a mean muscle O(2) consumption of 12.4 ml O(2) kg(-1) muscle min(-1), based on a Mb concentration of 6.4 g 100 g(-1) muscle. Type B desaturation patterns demonstrated a more gradual decline, often reaching a mid-dive plateau in Mb desaturation. This mid-dive plateau suggests maintenance of some muscle perfusion during these dives. At the end of type B dives, Mb desaturation rate increased and, in dives beyond the ADL, Mb saturation often reached near 0%. Thus, although different physiological strategies may be used during emperor penguin diving, both Mb desaturation patterns support the hypothesis that the onset of post-dive lactate accumulation is secondary to muscle O(2) store depletion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heart rate regulation and extreme bradycardia in diving emperor penguins.

To investigate the diving heart rate (f(H)) response of the emperor penguin (Aptenodytes forsteri), the consummate avian diver, birds diving at an isolated dive hole in McMurdo Sound, Antarctica were outfitted with digital electrocardiogram recorders, two-axis accelerometers and time depth recorders (TDRs). In contrast to any other freely diving bird, a true bradycardia (f(H) significantly <f(H...

متن کامل

Stroke rates and diving air volumes of emperor penguins: implications for dive performance.

Emperor penguins (Aptenodytes forsteri), both at sea and at an experimental dive hole, often have minimal surface periods even after performance of dives far beyond their measured 5.6 min aerobic dive limit (ADL: dive duration associated with the onset of post-dive blood lactate accumulation). Accelerometer-based data loggers were attached to emperor penguins diving in these two different situa...

متن کامل

Air sac PO2 and oxygen depletion during dives of emperor penguins.

In order to determine the rate and magnitude of respiratory O2 depletion during dives of emperor penguins (Aptenodytes forsteri), air sac O2 partial pressure (PO2) was recorded in 73 dives of four birds at an isolated dive hole. These results were evaluated with respect to hypoxic tolerance, the aerobic dive limit (ADL; dive duration beyond which there is post-dive lactate accumulation) and pre...

متن کامل

In pursuit of Irving and Scholander: a review of oxygen store management in seals and penguins.

Since the introduction of the aerobic dive limit (ADL) 30 years ago, the concept that most dives of marine mammals and sea birds are aerobic in nature has dominated the interpretation of their diving behavior and foraging ecology. Although there have been many measurements of body oxygen stores, there have been few investigations of the actual depletion of those stores during dives. Yet, it is ...

متن کامل

Returning on empty: extreme blood O2 depletion underlies dive capacity of emperor penguins.

Blood gas analyses from emperor penguins (Aptenodytes forsteri) at rest, and intravascular P(O(2)) profiles from free-diving birds were obtained in order to examine hypoxemic tolerance and utilization of the blood O(2) store during dives. Analysis of blood samples from penguins at rest revealed arterial P(O(2))s and O(2) contents of 68+/-7 mmHg (1 mmHg= 133.3 Pa) and 22.5+/-1.3 ml O(2) dl(-1) (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 214 Pt 11  شماره 

صفحات  -

تاریخ انتشار 2011